Runoff and Erosion Data: Wildfire Rainfall Simulator Experiments

Jerry Gottfried, Hydrologist, USFS Phil Guertin, Hydrologist, University of Arizona Ginger Paige, Hydrologist, University of Wyoming Jeff Stone, Hydrologist, USDA-ARS

vest Watershed Researc

Fire Science

Outline

- Review Research Objectives
- Methodology
 Data & data rad
 - Data & data reduction
- Site descriptions & characteristics
- Rainfall Simulator Experiments
 - General runoff and erosion
 - Comparison burned & unburned sites
 - Additional wildfire sites
- Model Input Parameters

Summary

Research Objectives

- Quantify runoff and erosion from the two ecological sites immediately following the wildfire using rainfall simulator measurements.
- Measure the runoff and erosion processes during the "recovery" period.
 - Compare results from similar unburned ecological sites.
- Develop model input parameters for semi-arid grasslands for ERMiT from the runoff and erosion measurements.

Research Approach

- Variable intensity rainfall simulator experiments on the 2 burned ecological sites (2 - 4 plots/site).
 Measure infiltration, runoff, and erosion for a range of rainfall intensities (25 – 180 mm/hr).
- Compare results from those at similar unburned ecological sites at the USDA- ARS Walnut Gulch Experimental Watershed.
- Results from three years of simulation on the original Ryan Fire and unburned sites.
 - Results from two additional wildfire sites.

Walnut Gulch Rainfall Simulator

Variable Intensity Rainfall Simulator

- Computer Controlled Intensities:
 - 13 178 mm/hr
- 2m by 6m plot
- Oscillating boom
- 4 VeeJet nozzles
- Rainfall energy close to natural rainfall

Measurements

Runoff

- Measured at end of plot using pressure depth gauge and precalibrated flume.
- Each intensity applied until steady state is observed.
- Infiltration is calculated as: (Intensity Runoff).
- Sediment
 - Grab samples were taken during the rise of the hydrograph and at steady state.
- Plot and site characteristics
 - Point frame measurements of Canopy cover, ground cover and microtopography (400pts/plot).

Simulator setup at the Post Canyon site: year 1 (2002)

10.00

Site Characteristics

Loamy Upland: Post Canyon

Soi

Soil texture: gravelly fine sandy loam Slope: 9% Burn Severity: low

(Ground Cover	Canopy
Cover		
2002:	29%	0%
2003:	35%	22%
2004 :	33%	55%
Unburned:	82%	88%
imey Slopes.	: East Mesa	
texture: gravelly f	ine sandy loam Slope:	12% Burn Severity: moderate
	Ground Cover	Canopy
Cover		
2002:	57%	0%
2003:	57%	18%
2004:	55%	54%
Unburned	60%	

Results: site averages

Runoff Ratio: runoff volume (Q)/ rainfall volume (I) Sediment Ratio: sediment yield (SY)/runoff volume (Q) normalized for slope (So).

Results: site averages

Results: site averages

Changes in Runoff and Erosion

Burned 2002 vs. Unburned

Runoff Ratio:

Sediment Ratio:

- Loamy Upland 74%
- Limey Slope 5%

- Loamy Upland 2230%
- Limey Slope 399%

Burned 2002 vs. 2003

Runoff Ratio:

- Loamy Upland 41%
- Limey Slope 2%

Sediment Ratio:

- Loamy Upland 11%
- Limey Slope 38%

Burned 2003 vs. 2004

Runoff Ratio:

- Loamy Upland 1%
- Limey Slope 3%

Sediment Ratio:

- Loamy Upland -
- Limey Slope

Infiltration: site averages

Sediment discharge

Contributing area was computed using optimized μ_{f} . Steady state sediment discharge plotted vs area

Sediment discharge

Sediment discharge

Summary: Ryan Fire

Burned vs. Unburned:

- There were significant increases in runoff and erosion on the burn sites
 - Greater increase in erosion than runoff
 - Differences between two the sites: more significant increases for the Loamy Upland site

Recovery:

- Decreases in erosion and increases in runoff
 - Erosion rates still much higher than unburned sites
 - Differences between the two sites: effect of ground cover?
 - Increase in runoff indicates that there may be a decrease in the site productivity & surface sealing

• ABAR Fire: 2003

Oak Woodland: Loamy Upland site Soil: Gravelly Fine sandy loam Slope: 9-12% Moderate Intensity Burn

Tank Fire: 2004

Grassland: Clay Slopes site Soil: Clay Ioam Slope: 27-30% Moderate Intensity Burn

Average normalized runoff for the oak-woodland and the grassland sites

Significant increase in runoff after the fire for the oak-woodland only, significant increase again the first year post-fire

No significant change in runoff among treatments in the grassland sites.

Average normalized sediment yield for the oakwoodland and grassland sites.

Significant increase in sediment yield for both oak-woodlands and grasslands sites, more drastic in oak-woodlands.

Both oak-woodlands and grasslands approach unburned conditions within two years

The results from these and additional studies are being used to develop semi-arid grassland parameters for distributed hydrologic models

AGWA, KINEROS2, IRS, ARiDBasin, WEPP, and ...

ERMit to evaluate runoff and erosion risks following wildfires.

ERMIT

Model Input Parameters

WEPP: Water Erosion Prediction Project (USDA-ARS)

Runoff: Hydraulic Conductivity (K_e) mm/h: Green and Ampt Infiltration Equation Erosion: Interrill Erodibility (K_i) Rill Erodibility (K_r) and Critical Shear (T_c)

ERMIT: Erosion Risk Management Tool

Climate Vegetation type: percent cover Soil series: soil texture Burn severity Slope

Model Input Parameter Identification

Hydraulic Conductivity

Site \mathbb{R}^2 70 EM 0.9733 60 K - LS 0.949950 Average Ke (mm/h Abar 40 PC 0.9866 Fast Mesa Post Canyon 30 K - LU 0.9817 Tank Fire 20 AB 0.9628 10 ABN 0.9268 0 1 2 3 natural TF 0.9801 **Fire Year** TFN 0.9642

Peak Runoff

Observed vs Predicted

Model Input Parameter Identification

Interrill Erodibility: Average site parameters

Inint Fire Science Program **Model Input Parameters**

Very good fit with optimized K_e parameters for WEPP.

Erosion parameters - strong correlations to vegetation complexes

ACKNOLWEDGEMENTS

Joint Fire Science Program

SWRC Staff Arizona NRCS The Audubon Research Ranch U of A Watershed Management Department

